Formation of Intermetallic Compound by Mechanical Alloying.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Mo Addition on Nanostructured Ni50Al50 Intermetallic Compound Synthesized by Mechanical Alloying

The mechanical alloying process was used to synthesize the Ni50Al50−xMox nanocrystalline intermetallic compound using pure Ni and Al elemental powder. This process was carried out in the presence of various Mo contents as a micro-alloying element for various milling times. Structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD) and scanning e...

متن کامل

Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5) Intermetallic Compound During Mechanical Alloying Process

In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many rese...

متن کامل

synthesis and characterization of nanocrystalline ni50al50-xmox (x=0-5) intermetallic compound during mechanical alloying process

in the present study, nanocrystalline ni50al50-xmox (x = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. alni compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many rese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Japan Society of Powder and Powder Metallurgy

سال: 1994

ISSN: 0532-8799,1880-9014

DOI: 10.2497/jjspm.41.949